Sunday, June 21, 2009

Complete Atom-By-Atom Transistor Simulation Finished In 15 Minutes


A simulation of electrical current moving through a futuristic electronic transistor has been modeled atom-by-atom in less than 15 minutes by Purdue University researchers.

The work demonstrates that future electronic devices can be quickly simulated on advanced computers, opening the door to new nanoscale semiconductor components that are more powerful and use less energy.

The simulation was run on Oak Ridge National Laboratory's Jaguar supercomputer, the world's second fastest and one of just two computers capable of petascale performance.

The modeling of the transistor ran on more than 147,000 computer processors simultaneously, according to Gerhard Klimeck, professor of electrical and computer engineering and director for the National Science Foundation-funded Network for Computational Nanotechnology.

Del Alamo says there is a need for faster development of new electronic components.

"The search for a replacement technology for silicon semiconductors is one of the greatest technical challenges of our time," del Alamo says. "The demonstration by Purdue of a very fast and massively parallel simulation for nanometer-scale transistors involving very complex physics is extremely significant because it enables the quick exploration of different device designs. This allows us to focus our experimental efforts on the designs that offer the greatest potential for future devices."

Jaguar, the supercomputer that enabled this work, ranks second on the bi-annual Top500.org list of supercomputers and was built using 182,000 AMD Opteron processors. Computers of this size and scale open new doors to research, says Douglas Kothe, director of science at the National Center for Computational Science, which is based at Oak Ridge National Laboratory.

"Professor Klimeck and his colleague have demonstrated the unique transformational scientific opportunity that comes from scaling a science application to fully exploit the capabilities of petascale systems like the Cray XT5 at the Oak Ridge Leadership Computing Facility," Kothe says.